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Abstract
The backbone approach to constructing a ground-motion logic tree for probabilistic
seismic hazard analysis (PSHA) can address shortcomings in the traditional approach
of populating the branches with multiple existing, or potentially modified, ground-
motion models (GMMs) by rendering more transparent the relationship between
branch weights and the resulting distribution of predicted accelerations. To capture
epistemic uncertainty in a tractable manner, there are benefits in building the logic
tree through the application of successive adjustments for differences in source, path,
and site characteristics between the host region of the selected backbone GMM and
the target region for which the PSHA is being conducted. The implementation of this
approach is facilitated by selecting a backbone GMM that is amenable to such host-
to-target adjustments for individual source, path, and site characteristics. The NGA-
West2 GMM of Chiou and Youngs (CY14) has been identified as a highly adaptable
model for crustal seismicity that is well suited to such adjustments. Rather than using
generic source, path, and site characteristics assumed appropriate for the host
region, the final suite of adjusted GMMs for the target region will be better con-
strained if the host-region parameters are defined specifically on the basis of their
compatibility with the CY14 backbone GMM. To this end, making use of a recently
developed crustal shear-wave velocity profile consistent with CY14, we present an
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inversion of the model to estimate the key source and path parameters, namely the
stress parameter and the anelastic attenuation. With these outputs, the effort in con-
structing a ground-motion logic tree for any PSHA dealing with crustal seismicity can
be focused primarily on the estimation of the target-region characteristics and their
associated uncertainties. The inversion procedure can also be adapted for any appli-
cation in which different constraints might be relevant.

Keywords
PSHA, ground-motion logic trees, backbone GMM, host-region parameters, Fourier
spectral inversion
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Introduction

A key objective in probabilistic seismic hazard analysis (PSHA) is to ensure both a repre-
sentation of the best estimate of the site hazard, on the basis of the currently available data
and models, and the adequate capture of the associated uncertainty, which arises from the
inevitable incompleteness of the data. This objective is often expressed as capturing the
center, body, and range of technically defensible interpretations, or CBR of TDI (United
States Nuclear Regulatory Commission (USNRC), 2018). The tool ubiquitously deployed
in PSHA to capture the CBR of TDI is the logic tree, with a node for each element of the
PSHA inputs with weighted branches corresponding to the alternative models or para-
meter values that could represent each element. The CBR of TDI objective for ground-
motion logic trees can be interpreted in terms of the resulting distribution of predicted
ground-motion amplitudes. The traditional approach of populating the branches of the
logic tree with published ground-motion models (GMMs) is not an effective way of meet-
ing this objective because of the obscure relationship between the weights on the logic-tree
branches and the resulting distribution of ground motions (Scherbaum et al., 2005).
Consequently, in recent years it has become increasingly common in practice to populate
the branches of a ground-motion logic tree with scaled versions of a single GMM
(Atkinson et al., 2014). The scaling factors may vary as a function of both magnitude and
distance, but in all cases the relationship between the weights on the branches and the
resulting distribution—which can be broader than that defined by existing GMM
predictions—becomes much more transparent. This general approach of populating a
logic tree with scaled versions of a single GMM has been called the backbone approach
(Bommer, 2012) and has been widely adopted using this terminology (Akkar et al., 2021;
Douglas, 2018; Haendel et al., 2015; Kowsari and Ghasemi, 2021; Weatherill and Cotton,
2020; Weatherill et al., 2020). The approach has also been adapted to avoid similar pitfalls
in constructing logic trees for site response analyses (Rodriguez-Marek et al., 2020). Once
a backbone GMM is selected, the ideal way to construct the logic tree is through a series
of nodes that correspond to adjustments for differences in source, path, and site para-
meters between the host region of the GMM and the target region of the PSHA. Adding
branches for the uncertainty in the estimates of each of the parameters for which adjust-
ments are made provides a physical and tractable basis for capturing epistemic uncer-
tainty. To apply sequential host-to-target adjustments to the backbone GMM, it is
desirable to select a model that is amenable to such targeted modifications. Bommer and
Stafford (2020) previously identified the three key characteristics of an adaptable GMM
to be as follows: (1) reliable host-region characterization; (2) isolated influence of
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individual source, path, and site characteristics; and (3) a functional form that reflects the-
oretical scaling of Fourier amplitude spectra. Chiou and Youngs (2014) was identified as
the most adaptable of current GMMs for crustal earthquakes, having a functional form
that closely mimics the theoretical scaling implicit in stochastic simulations and including
terms that can be directly related to source (through the stress parameter, Ds), path (in
terms of anelastic attenuation, as reflected in the quality factor, Q), and site (through
explicit inclusion of VS30) characteristics. However, while the Chiou and Youngs (2014)
GMM—hereafter CY14—satisfies the second and third criteria very well, the challenge
remains to obtain a suite of parameters that reflect the host-region source, path, and site
characteristics. The focus and purpose of this article is to provide such a suite of host-
region parameters for the CY14 model to facilitate implementation of the backbone
GMM approach to constructing ground-motion logic trees for PSHA studies involving
sources of crustal seismicity.

The article will now move to discuss the key differences between host-region vs model-
specific Fourier parameters. Following that, the mathematical framework that is employed
to invert the CY14 GMM is presented in detail. This includes the specification of the rele-
vant system of equations, the optimization framework, the specification of the parameter
space, explicit definition of the CY14 model to be inverted, and a presentation of the
results. Finally, the article closes with a discussion of the results obtained and an interro-
gation of the model performance.

Host-region vs model-specific parameters

In the original formulation of the hybrid-empirical method (HEM) of Campbell (2003), in
which adjustments for all host-to-target region differences are made in a single step, the
host-region parameters were to be obtained from studies characterizing source and path
features of the region for which the backbone GMM was developed. These source and
path parameters could then be combined with a representative shear-wave velocity (VS)
profile (Boore, 2016), anchored to a VS30 value that is high enough to ensure mainly linear
site response but low enough to be well-constrained by recording sites in this range, to
complete the host-region characterization. Scherbaum et al. (2006) addressed the fact that
many empirical GMMs combine data from several regions and, therefore, there is often
no unique geographical region that can be defined as the host region. Using stochastic
simulations (Boore, 2003) based on hypocentral distance, Scherbaum et al. (2006) applied
a genetic algorithm to determine the combination of source, path, and site parameters that
are most compatible with several GMMs, as defined by a minimum misfit. For GMMs
developed through the use of the ergodic assumption (Anderson and Brune, 1999), the
host region is really a pseudo-region in the sense that it does not relate to a single geogra-
phical region.

The CY14 model was developed using the ergodic assumption, pooling strong-motion
data from around the world (particularly for moderate-to-large magnitude scenarios).
However, differences in site response (Japan) and anelastic attenuation (Japan, Italy, and
the Wenchuan sequence) were identified for certain regions, and bespoke coefficients for
these ‘‘non-California’’ regions were presented. The implication is that the default CY14
model is developed with the intention that it be representative of ground motions in
California. That said, Figure 1 shows the magnitude–distance distribution of the data used
by CY14. For magnitudes above M= 6, a significant portion of the data is not from
California and it is more appropriate to consider the CY14 model representing some
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pseudo-region with crustal characteristics similar to those of California, rather than
California itself. That is, identifying host-region Fourier parameters strictly appropriate
for California would not necessarily mean that these were compatible with CY14.

We believe that it is, therefore, still more appropriate to define a suite of source, path,
and site parameters that are consistent with the backbone GMM—which may, in some
sense, correspond to a pseudo-region—rather than bring in additional uncertainty related
to any misfit between this pseudo-region and average conditions in the assumed host
region of California. The objective is to adjust the backbone model to match the target-
region characteristics and for this purpose the actual provenance of the backbone GMM
is not important, provided that the host-region parameters collectively provide simulations
that are a very good approximation to the predictions from the empirical model. Another
advantage of determining a suite of inverted parameters that are compatible with the
backbone GMM is that it allows constraints to be applied that facilitate the application of
the subsequent adjustments. For example, the geometric spreading can be modeled to
mimic the spreading implicit in the backbone GMM, whereas published studies reporting
source, path, and site parameters for the host region may have assumed different spread-
ing functions, which would then need to be accounted for in applying an adjustment for
anelastic attenuation. In addition, the inversion can focus on matching the backbone
GMM in the magnitude and distance ranges of most relevance to the PSHA integrations
for the target site. Moreover, for this specific application, we are fortunate to have access
to a VS profile that has been defined on the basis of compatibility with the CY14 GMM
(Al Atik and Abrahamson, 2021), which is adopted as a constraint for our inversions thus
facilitating the definition of a truly model-consistent suite of parameters.

Figure 1. Magnitude–distance distribution of data used to develop the Chiou and Youngs (2014) GMM.
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Inverting the CY14 GMM

Mathematical framework

Within the random vibration theory (RVT) framework, response spectral ordinates for a
given natural period, Tn (or natural frequency, fn = 1=Tn), and damping ratio zn, are com-
puted as:

Sa fn, znð Þ= c fn, znð Þv2
nurms fn, znð Þ= c fn, znð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 fn, znð Þ

Drms fn, znð Þ

s
ð1Þ

where Sa(fn, zn) is the pseudo-spectral acceleration, vn = 2pfn is the natural angular fre-
quency of the oscillator, urms is the root-mean-square (RMS) displacement response of the
oscillator, c is the peak factor (the expected value of the ratio between the maximum and
RMS displacement response: c[umax=urms), m0 is the zeroth spectral moment of the oscilla-
tor response, and Drms is the root-mean-square duration. All of these components depend
on both fn and zn.

The zeroth moment is computed using the Fourier amplitude spectrum (FAS) of the
oscillator’s displacement response U f ; fn, znð Þj j, and the general expression for the kth
moment:

mk fn, znð Þ = 2v4
n

ð‘
0

2pfð Þk U f ; fn, znð Þj j2df

= 2

ð‘
0

2pfð Þk H f ; fn, znð Þj j2 A fð Þj j2df

ð2Þ

with k = 0, H f ; fn, znð Þj j being the modulus of the frequency response function of the oscil-
lator, and A fð Þj j being the FAS of the ground acceleration. The modulus of the oscillator
frequency response function is defined as:

H f , fn, znð Þj j= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f =fnð Þ2
h i2

+ 2znf =fnð Þ2
r [

v2
n U f ; fn, znð Þj j
jA(f )j ð3Þ

Note that this frequency response function differs slightly from that in the study by
Boore (2003) as it embeds the influence of v2

n. The FAS of acceleration is specified in terms
of a source spectrum, E fð Þ, and path, P fð Þ, and site, S fð Þ, modifiers as:

A fð Þj j= 2pfð Þ2E fð ÞP fð ÞS fð Þ ð4Þ

The overview article of Boore (2003) provides detailed descriptions of these compo-
nents, including a number of alternative representations that can be used for the source
spectrum.

In this study, the primary objective is to obtain a set of FAS parameters that can be used
for making comparisons against equivalent parameter sets inverted from empirical data in
some target region. Such data are overwhelmingly dominated by recordings of rupture
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scenarios for which a simple point-source representation of the earthquake source is appro-
priate. Comparisons between host-region and target-region FAS parameter sets are greatly
facilitated if the same parametric formulation is adopted. In addition, with the consider-
ation of an appropriate distance metric, a simple point-source spectrum can also represent
motions from larger events that will often be considered within hazard calculations (Boore,
2009). Therefore, while the CY14 GMM is applicable for very large events where double-
corner frequency source spectra (Atkinson and Silva, 2000; Boore et al., 2014) can perform
well, the source spectrum used in this study is a relatively simple single-corner frequency v2

spectrum (Aki, 1967) defined by:

E fð Þ =
CM0

1 + f =fcð Þ2
ð5Þ

The corner frequency, fc, in Equation 5 is defined in terms of the seismic moment, M0

(Nm), and stress parameter, Ds (MPa), following Brune (1970, 1971)

fc = 4:90583104bs

Ds

M0

� �1=3

ð6Þ

The term C is defined as:

C =
RufVF

4prsb
3
s r0

310�13 ð7Þ

with Ruf being an average radiation pattern (taken to be 0.55, as is common), V = 1=
ffiffiffi
2
p

is
used to partition energy among horizontal components, F = 2 represents the free-surface
effect, rs = 2:75 (mg/m3) and bs = 3:5 (km/s) are the density and S-wave velocity at the
source (Al Atik and Abrahamson, 2021), and r0 = 1 km is the reference distance to which
the source amplitude is anchored. When the seismic moment is specified in units of Nm,
and other terms adopt the units previously indicated, the 1310–13 factor will define spec-
tral amplitudes in Equation 4 with units of cm/s. It is important that the reference distance
is specified to be consistent with the geometric spreading function, within P fð Þ, and the
source density and velocity should also be consistent with the impedance effects encapsu-
lated within the site response S fð Þ. That is, distance scaling and impedance effects must be
modeled relative to the reference distance and source impedance.

The path scaling is comprised of geometric spreading, g rð Þ, and anelastic attenuation,
q f , rð Þ, effects.

P fð Þ= g rð Þq f , rð Þ= g rð Þ exp � pfr

Q0f hcQ

� �
ð8Þ

The geometric spreading functions considered will be discussed subsequently, as will the
choice of distance metric r. In Equation 8, cQ is the velocity (km/s) used to determine the
quality factor Q0. These two terms clearly trade-off directly with each other, so cQ[bs is
typically assumed.

Finally, the site response S fð Þ is comprised of both impedance and damping effects.
Impedance effects are typically computed using the quarter wavelength approximation
(Boore, 2003, 2013), which requires the specification of a crustal profile (velocity and
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density variation with depth). Damping effects are modeled using a ‘‘kappa’’ filter of the
form exp �pk0fð Þ, where the k0 term should be consistent with the crustal profile used for
the impedance effects and the path attenuation, q f , rð Þ. The CY14 GMM has an elaborate
site response formulation that is capable of providing estimates of spectral amplitudes for
a broad range of VS30 values. In principle, this range of VS30 values corresponds to a range
of crustal profiles. However, for this study, we focus upon a single value of VS30 = 760 m/s,
and therefore require the specification of a single profile, or a single S fð Þ, that is consis-
tent with the target VS30. Al Atik and Abrahamson (2021) have recently developed a
method that can be used to determine a representative profile, and hence S fð Þ, for a given
GMM, and demonstrated the method using models including CY14. We, therefore, adopt
their findings for VS30 = 760 m/s directly and constrain S fð Þ within the inversion. The
impedance function and overall site response from Al Atik and Abrahamson (2021) is
shown in Figure 2. The Al Atik and Abrahamson (2021) model is a combination of both
impedance effects and damping, with k0 = 0:039 s, and these components should be used
together.

As noted in the previous section, we ideally want model-specific rather than host
region–specific parameters, and Figure 2 demonstrates the potential implications of this
point. In the absence of the Al Atik and Abrahamson (2021) model, an obvious choice to
constrain the impedance effects within S fð Þ would be to adopt the generic velocity profile
of Boore (2016) for the same target condition of VS30 = 760 m/s. Although the Boore
(2016) impedance function can reasonably be regarded as representative of the host region
associated with CY14, Figure 2 shows some important differences over a broad range of
frequencies. If the Boore (2016) impedance function were adopted, we would need to
invert for a value of k0, and would also need the other FAS parameters to accommodate
the differences seen in Figure 2.

Figure 2. Impedance effects and overall site response. The model of Al Atik and Abrahamson (2021) is
used to constrain S fð Þ, while the Boore (2016) model is shown for comparative purposes. Curves with
damping effects included correspond to k0 = 0:039 s in both cases.
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The remaining terms of Equation 1 yet to be defined are Drms and c. The RMS duration,
Drms, is computed from the excitation duration, Dex, as:

Drms = G fn, znð ÞDex ð9Þ

where G is itself a function of the excitation duration, in addition to the natural frequency
of the oscillator and the damping ratio. This term G is computed as the adjustment to the
excitation duration that is required for the RVT-based estimates of peak oscillator
response to match those obtained from time-domain simulations (Boore and Thompson,
2012, 2015) In this study, the G factors for active crustal regions from the study by Boore
and Thompson (2015) are assumed appropriate and are adopted. The overall excitation
duration is represented as:

Dex = Dsrc + Dpath ð10Þ

where Dsrc is the source duration and Dpath is the path duration. The study by Boore and
Thompson (2014) presented a model for path duration that was exclusively a function of
the rupture distance, RRUP. This model was revisited by Boore and Thompson (2015), and
was deemed appropriate for continued use with the caveat that RRUP be replaced by the
equivalent point-source distance, RPS . The Boore and Thompson (2015) path duration
model is used within this study, but the particular definition of RPS can vary, as discussed
subsequently. The source duration is represented as Dsrc = 1=fc and is, therefore, a function
of the seismic moment and stress parameter. As a result, in this study, the only component
of the duration model that is inverted for is Ds—which controls the source duration within
Dex through its relationship with the corner frequency.

Finally, the peak factor c is computed following the recommendations of Boore and
Thompson (2015). Specifically, this entails the use of the Der Kiureghian (1980) modifica-
tion to the peak factor distribution by Vanmarcke (1975).

All terms of Equation 1 have now been defined, and this set of equations collectively
define the procedure for computing a response spectral ordinate via the RVT procedure.
As can be seen, a number of components are constrained within the framework.
Specifically, the path duration and G duration correction factors are fixed, and the site
response S fð Þ is fixed. As previously noted, the stress parameter Ds is a free parameter
and influences the source duration. A number of other parameters, related to geometric
spreading, source depth scaling, and anelastic attenuation, influence A fð Þj j. As all spectral
moments depend on A fð Þj j, both the zeroth moment and the peak factor in Equation 1
depend on these FAS parameters. We will collectively define all free FAS parameters by
the vector u.

In addition, while not explicitly noted in the equations presented previously, all terms
of Equation 1 depend on variables that characterize the rupture scenario, such as magni-
tude, distance, and depth. These independent variables, along with Tn and zn, are collec-
tively represented by xijkl, where the indexing is i for depth, j for distance, k for magnitude,

and l for period. Therefore, once a particular rupture scenario and single-degree-of-free-
dom (SDOF) oscillator are defined, that is, xijkl is formed, the spectral acceleration associ-

ated with these properties is represented as SaRVT
ijkl xijkl; u
� �

. For the same set of independent

variables, the CY14 model can be evaluated to compute SaCY
ijkl xijkl

� �
. The computation of

SaCY
ijkl xijkl

� �
is not quite a direct evaluation of the CY14 GMM, the reason being that the
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constrained S fð Þ corresponds to purely linear site response. Values of SaCY
ijkl xijkl

� �
are,

therefore, computed by enforcing pure linear site response within the CY14 GMM. The
host-to-target site adjustments required for any given application can then define linear
and nonlinear site corrections relative to linear site response within the host model.

To identify the optimal FAS parameters, we solve for the u that minimizes the function
in Equation 11:

lnL u; xð Þ=
XnT

l = 1

XnM

k = 1

XnR

j = 1

XnZ

i = 1

wi ln SaCY
ijkl(xijkl)� ln SaRVT

ijkl (xijkl; u)
h i2

ð11Þ

The summation over the indices i, j, k, and l correspond to the consideration of all
rupture scenarios (nZ depths, nR distances, and nM magnitudes) and nT response spectral
ordinates used within the inversion. The term wi represents weights of a discrete depth dis-
tribution, to be defined in detail later. All numerical analyses are implemented in Julia
(Bezanson et al., 2017), with all RVT operations performed using the bespoke
StochasticGroundMotionSimulation.jl package (Stafford, 2021b). Optimal parameter esti-
mates are obtained using gradient-based optimization algorithms implemented in the
NLopt library (Johnson, 2021b) via the NLopt.jl Julia interface (Johnson, 2021a). While
multiple algorithms were tested, the sequential least squares quadratic programming algo-
rithm, SLSQP, of Kraft (1988, 1994) was found to be relatively fast and stable for this par-
ticular problem. Gradients required for the optimization process were computed exactly
using automatic differentiation (Molkenthin et al., 2014) via the ForwardDiff.jl package
(Revels et al., 2016).

The weighted sum-of-squares expression in Equation 11 is essentially proportional to
the log-likelihood function. As such, estimates of the standard errors and covariances
among the FAS parameters can be computed using the Cramér–Rao bounds and the
Fisher information matrix (Stafford, 2019). The Cramér–Rao bounds define the covar-
iance matrix of the parameters u as:

Sû ø IðûÞ�1 ð12Þ

where IðûÞ is the Fisher information matrix evaluated at the optimal parameter estimates
û. When we have p parameters, the information matrix will be a p3p matrix with individ-
ual elements defined by:

IijðûÞ=� E
∂2 lnLðû; xÞ

∂ui∂uj

" #
ð13Þ

That is, the information matrix is the expectation of the Hessian matrix evaluated at
the optimal parameter estimates. The computation of these mixed second-order partial
derivatives for the mathematical framework presented throughout this section appears to
be a formidable undertaking. However, like the gradients required for the optimization
procedure, the Hessian matrix is readily evaluated using exact automatic differentiation
via ForwardDiff.jl (Revels et al., 2016), as StochasticGroundMotionSimulation.jl was
developed with this functionality in mind.
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Parameter space

It is well known that significant parameter correlations can be encountered when perform-
ing Fourier spectral inversions (Boore, 2012; Boore et al., 1992). For this reason, inver-
sions of empirical Fourier spectra are generally conducted in a sequence of steps in the
hope of decoupling potential dependencies, as discussed in detail by Abercrombie (2021).
When working with empirical data, the parameter trade-offs that are observed arise from
multiple sources. Although each of the Fourier spectral parameters introduced in the pre-
vious section plays a distinct role in influencing either the amplitude or shape of spectra,
the combination of the variability in Fourier spectral ordinates and the bandwidth limita-
tions of recording instruments dictates that their unique role can rarely be isolated.
Compounding this issue is the fact that the rupture scenarios represented within empirical
databases impose an implicit weighting upon certain parameters over others. For example,
many empirical datasets are dominated by recordings of small-magnitude events at large
distances (Figure 1). Such scenarios produce recordings with a limited usable bandwidth
at relatively high frequencies where the influence of Ds, Q, and k0, all play a role.

When inverting a response spectral GMM, there are different challenges to address to
limit parameter correlations. The two primary issues relate to how the parameter space is
sampled, and how the influence of FAS parameters manifests for response spectral ordi-
nates (Bora et al., 2016; Stafford et al., 2017). To ensure that constraint can be imposed
upon each FAS parameter of interest, it is important to sample the parameter space of
independent variables to include rupture scenarios for which the loss function of Equation
11 exhibits the greatest sensitivity to each parameter.

The value of the loss function in Equation 11 depends on the particular rupture scenar-
ios and periods that are considered. For any given set of n RVT calculations, a particular
set of optimal parameters û will be obtained. Therefore, an objective of designing the sam-
pling of the parameter space is to specify the xijkl scenarios in such a manner that û is rela-
tively stable. That is, adding or removing scenarios from xijkl would not lead to significant
changes to û. Ensuring a broad coverage of the magnitude, distance, depth, and period
space helps to provide this stability. However, each scenario that is considered also adds
to the computational demands of the inversion. We, therefore, look to strike a balance
between the coverage of the parameter space and the robustness of the û estimates.

To explore and aid the design of the parameter space, formal sensitivity analyses were
conducted. Starting with some initial estimates of parameter values,
u0[ Ds = 100, g1 = 1:15, Q0 = 200, h = 0:65f g, which map into y u0ð Þ[ ln SaRVT

ijkl xijkl; u0

� �
,

the relative sensitivities can be computed as (Molkenthin et al., 2014):

Fi =
u0, i

y u0ð Þ
∂y uð Þ
∂ui

				
u0

’
Dy uð Þ
y u0ð Þ

� �
u0, i

Dui

� �
ð14Þ

This expression determines how a percentage change in ui maps into a percentage
change in y uð Þ[ ln SaRVT x; uð Þ. As the loss function of Equation 11 depends directly on
ln SaRVT x; uð Þ, it is important to sample the parameter space to ensure that scenarios that
lead to strong values (positive or negative) of Fi are obtained. Note that as SaRVT x; uð Þ\1

over the parameter space considered, and all elements of u are positive, negative values of
Fi correspond to situations where ∂ ln Sa=∂ui.0, and vice versa.

Figure 3 shows the relative sensitivities to four key FAS parameters for short (T = 0:05

s), intermediate (T = 0:5 s) and long (T = 5:0 s) periods. The base FAS model uses the
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source spectrum of Equation 5, that depends on Ds, the anelastic attenuation formulation
within Equation 8, depending on both Q0 and h, and a geometric spreading function that
smoothly transitions from a near-field geometric spreading rate of g1 to a fixed far-field
spreading rate of gf = 0:5. This spreading function is shown in Equation 15, where rt = 50

km and r0 = 1 km:

ln g RPSð Þ= � g1 ln RPSð Þ+
g1 � gf

� �
2

ln
R2

PS + r2
t

r2
0 + r2

t

� �
ð15Þ

In Equation 15, the equivalent point-source distance RPS, to be defined later, is com-
puted using the model of Boore and Thompson (2015).

Figure 3. Relative sensitivities, Fi (Equation 14) representative of periods in the short, intermediate,
and long range. Each column corresponds to the period shown in the column title, while each row
relates to the parameter specified in the row annotation. Common color ranges are adopted for all
panels in each row.
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Consideration of figures like those shown in Figure 3 ensures that the xijkl combinations
ultimately selected should have a good chance of isolating the effects of individual para-
meters. For example, the left and central columns of Figure 3 both show that the sensitiv-
ity to Q0 and h follow very similar patterns in magnitude–distance space (although the
shorter periods have a stronger relative sensitivity to h). This similarity in sensitivity leads
to strong correlations among Q0 and h if only these short-to-intermediate periods are
considered—which is often necessarily the case for empirical data. However, the right col-
umn of Figure 3 shows that the sensitivity to these parameters diverges for large-magni-
tude, long-distance, scenarios. The key to decoupling the correlation between Q0 and h is
to ensure that these ‘‘upper right’’ regions of the magnitude–distance space are sampled
for long periods.

Similar considerations can be used to isolate the role of other parameters. For example,
the left column of Figure 3 shows that g1 plays a significant role for large-magnitude,
short-distance scenarios—as it interacts strongly with the near-source saturation con-
straints. Furthermore, in the same column, Figure 3 also shows a strong local sensitivity
to Ds for intermediate magnitudes at short distances.

In addition to the above considerations, it is also important to ensure that the inverted
parameter set leads to RVT predictions that mimic the CY14 GMM over a broad range
of scenarios for which this GMM is applicable. If good performance over the full range of
applicability is not obtained, then complications can arise when developing host-to-target
adjustments as a result of extrapolation issues.

After considering the above constraints, a very comprehensive set of 7,140 magnitude–
distance depth scenarios was defined. For each of these scenarios, a set of 20 periods were
considered. As a result, for every evaluation of Equation 11, 142,800 RVT calculations
were performed (as well as the simultaneous computation of partial derivatives with
respect to each considered FAS parameter). Naturally, within the optimization process,
Equation 11 is evaluated a large number of times as we move from initial parameter esti-
mates toward the final converged solution. Formally, the optimization is terminated when
the relative tolerance in estimates of û drop below 131025. The procedure is computation-
ally intensive, but the package implementing the RVT procedure (Stafford, 2021b) takes a
few tens of microseconds on a standard laptop for an individual RVT calculation, and the
overall loss functions can be evaluated in several seconds (depending on the model).
Performing the full optimization can take multiple hours, but this depends on the model,
convergence tolerances, numbers of scenarios, and parameters.

The full specification of xijkl can be obtained from:

� nT = 20 periods, approximately logarithmically spaced, with specific values of 0.01,
0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 5.0,
7.5, and 10.0 s.

� nM = 28 moment magnitude, M, values, linearly spaced with increments of DM= 0:2
from 3.0 to 8.4, inclusive. This covers the full range of applicability of the CY14
GMM, with an additional extension to smaller magnitudes given their relevance for
deriving model adjustments.

� nR = 35 distance values (defined as Joyner–Boore, RJB, distances), with values of 0,
1, 2, 3, 5, 7.5, 10, 12.5, 15, 17.5, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120,
140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, and 300 km. Tight spacing is
adopted at short distances to help constrain the near-source saturation. This
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spacing coarsens with increasing distance, but is linear within certain distance
ranges to help constrain the anelastic attenuation parameters. That is, we balance
the implicit weight assigned to geometric spreading and anelastic attenuation para-
meters. As discussed in the following section, all considered rupture scenarios corre-
spond to vertical strike–slip events, so the rupture distance required by CY14 is

computed as RRUP Mð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

JB + Z2
TOR Mð Þ

q
, with ZTOR Mð Þ being the magnitude-

dependent depth to the top of rupture.
� nZ = 9 depth values, defined as magnitude-dependent fractiles from the depth distri-

bution shown in Figure 4. The depth distribution is derived from the model for the
expected depth from CY14, and the empirical data underpinning that model.
Specifically, the expected depth model (derived in

ffiffiffiffiffiffiffiffiffiffi
ZTOR

p
�M space) is adopted

directly, and a model for the magnitude-dependent standard deviation of
ffiffiffiffiffiffiffiffiffiffi
ZTOR

p
is

derived from the empirical data. These parameters are assumed to define a normal
distribution of

ffiffiffiffiffiffiffiffiffiffi
ZTOR

p
that is truncated to apply over the range

ffiffiffiffiffiffiffiffiffiffi
ZTOR

p
2 0, 20½ �. For

each considered magnitude, this truncated normal distribution is then discretised
into nine pairs of nodes, ztor, i, and weights, wi, using the approach of Miller and
Rice (1983). These discrete depths are shown in Figure 4, with line thicknesses and
color intensities representing the weights, wi. Note that these discrete depth weights
correspond to the weights in Equation 11 and that

P
i wi = 1.

Note that the full factorial combination of magnitude, distance, and depth values leads
to 8,820 rupture scenarios. The lower number (7,140) of scenarios actually used arises
because the depth distribution collapses to a singular value for the largest events, that is,
the depth to the top of rupture for very large events is assumed to be zero (Figure 4).

Figure 4. Discrete depth distribution used in the definition of the parameter space. The empirical data
used for the model development are shown using circular markers. The dark solid line shows the
expected depth model of CY14, while light shaded lines show nodes of the discrete depth distribution.
The square markers indicate the weighted mean of these discrete depths, confirming their consistency
with CY14.
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Host CY14 GMM for inversions

Because the source within the FAS model is treated as an equivalent point source, it is not
possible to explicitly model effects associated with style of faulting and fault-finiteness
(such as hanging-wall effects and directivity). For this reason, the rupture scenarios that
are considered all correspond to vertical strike–slip ruptures, and directivity effects are
ignored. This modeling decision effectively simplifies the CY14 model by rendering many
of the functional terms of the model redundant. For vertical strike–slip ruptures, ignoring
directivity effects (setting DDPP = 0), constraining site response to be purely linear, fixing
VS30 = 760 m/s and using the expected depth to the 1.0 km/s velocity horizon (setting
DZ1:0 = 0), the functional form of the CY14 GMM reduces to:

ln Sa = c01 + c7 +
c7b

cosh 2max (M� 4:5, 0)½ �

� �
DZTOR|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

depth to top�of�rupture scaling

+ c2 M� 6ð Þ+
c2 � c3

cn

ln 1 + ecn cM�Mð Þ
h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
magnitude scaling

+ c4 ln RRUP + c5 cosh c6 max M� cHM , 0ð Þ½ �ð Þ+ c4a � c4ð Þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

RUP + c2
RB

q� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

near�source saturation andgeometric spreading

+ cg1
+

cg2

cosh max M� cg3
, 0

� �� � !
RRUP|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

anelastic attenuation scaling

ð16Þ

where the c01 coefficient encapsulates the f1 ln 760=1130ð Þ associated with linear site
response. All other coefficients correspond directly to those of the CY14 GMM.

In Equation 16, the distinct functional terms that relate to ZTOR scaling, magnitude scal-
ing, geometric spreading (including near-source saturation), and anelastic attenuation are
indicated. While we should not expect a one-to-one mapping between the functional terms
of the FAS and those of Equation 16 (Bora et al., 2016), it does help to consider which
terms depend on magnitude, and where breaks in scaling arise within the CY14 GMM.
For example, the depth to top-of-rupture scaling is clearly magnitude dependent only for
M.4:5, so it is worth keeping that in mind when developing functional expressions within
the FAS inversions. As another example, the anelastic attenuation term is also magnitude
dependent, which suggests that one of the parameters Q0 or h may need to include magni-
tude dependence to replicate the scaling.

We can also see that the geometric spreading functional form shares a lot in common
with the function shown previously in Equation 15. The equivalent point-source distance,
RPS, considered by Boore and Thompson (2015) can be generally represented as:

RPS = Rn
RUP + h Mð Þn

� �1=n ð17Þ

where Boore and Thompson (2015) use n = 2, and h Mð Þ is their finite-fault factor model. In
the CY14 GMMwe have:
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h Mð Þ[c5 cosh c6 max M� cHM , 0ð Þ½ � ð18Þ

with c5, c6, and cHM being period dependent, and n = 1 in Equation 17. However, the sec-
ond term of the geometric spreading function that controls the geometric spreading at large
distances (where the interaction with anelastic attenuation is important), scales directly in
terms of RRUP rather than RPS . These considerations of individual terms within the overall
functional form of the CY14 GMM inform the parameterization of the FAS model used
within the inversions.

Inversion results

A challenge often faced when developing model adjustments is the reconciliation of
‘‘apparent parametric’’ and ‘‘real physical’’ differences that arise from considering different
magnitude ranges in the host and target regions. In particular, target region FAS para-
meter sets are often inferred from recordings of small magnitude events, while potential
host regions are generally considered because they have empirical constraint for larger
rupture scenarios of greater relevance to hazard calculations. It is, therefore, important to
ensure that the inversion of the CY14 GMM is robust for small magnitude events, and
that any magnitude dependence in the FAS parameters is adequately modeled. When this
is done successfully, differences in host and target region parameter sets obtained over the
small magnitude range can be appropriately scaled to corresponding differences at larger
magnitudes (assuming the physical FAS model is appropriate).

As a result, the first step of the inversion procedure is to investigate any magnitude
dependence of the FAS parameters by performing inversions for specific magnitude val-
ues. This first step is discussed in the following section, and informs the parameterization
of the full inversions presented subsequently.

Initial magnitude-dependent scaling. For a fixed value of magnitude, it can be appreciated that
many elements of the functional complexity within Equation 16 disappear. To mimic the
functional form of Equation 16, a single-corner source spectrum was adopted, with the
stress parameter made a function of the relative depth to the top-of-rupture, DZTOR. The
stress parameter scaling is therefore:

lnDs = lnDsM + dlnDs, zDZTOR ð19Þ

where lnDsM is the expected value of lnDs for magnitude M, and dlnDs, z determines how
strongly changes to the depth of rupture influence the logarithmic stress parameter. The
geometric spreading function is defined as:

ln g RPS , RRUPð Þ=� g1 ln RPSð Þ+
g1 � gf

� �
2

ln
R2

RUP + r2
t

r2
0 + r2

t

� �
ð20Þ

with r0 = 1 km, rt = 50 km, gf = 0:5, and the equivalent point-source distance defined as
RPS = RRUP + hM. In this formulation, hM is the best estimate of the saturation distance for
magnitude M. The anelastic attenuation is parameterized according to Equation 8, with
RRUP used as the distance metric. Site effects associated with impedance and damping are
constrained to equal the Al Atik and Abrahamson (2021) model. Therefore, with this
model formulation, there are six free FAS parameters for each magnitude level considered:
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DsM, dlnDs, z, g1, hM, Q0, and h. However, for the largest magnitudes, only five of these
parameters are relevant as ZTOR = 0 km for all scenarios and dlnDs, z = 0 as a result.

Inversions are performed for the periods, distances, and depths previously presented in
the Parameter Space section, and for individual magnitudes from 3.0 to 8.4 in 0.2 unit
increments. The results of these initial inversions are presented in Figure 5. In all cases,
both the parameter estimates and the associated standard errors are shown. Figure 5a
shows that stress parameter estimates initially grow exponentially with magnitude, up to
M= 5, before reaching a plateau over the approximate range M 2 (5, 7). Thereafter, the
stress parameter increases at an exponential rate, and reaches extremely high values that
would not ordinarily be regarded as physically meaningful. However, Figure 5c also shows
that the geometric spreading rate is approximately constant for small to moderate magni-
tudes before increasing significantly for the largest magnitudes. For the largest magnitudes,
these parameters have a strong positive correlation, with high stress parameter values trad-
ing off with high geometric spreading rates. This correlation can be observed in Figure 6,
along with all other parameter correlations. In cases like this, the apparent magnitude
dependence needs to be regarded with suspicion. However, previous studies are consistent
with the result that stress parameter values increase over the small magnitude range before
reaching an approximate plateau for larger magnitudes (Rietbrock et al., 2013; Yenier and
Atkinson, 2015b). This prior intuition is used to inform the parametric form used for the
full inversion, and to help decouple the correlation between stress parameter and geometric
spreading rates, to some extent.

Figure 5b shows the influence of DZTOR on Ds via the parameter dlnDs, z from Equation
19. For small magnitudes, estimates of dlnDs, z are well constrained, as the discrete depth
nodes considered within the inversion span a broad range of depths (Figure 4). For moder-
ate to large magnitudes, the range of DZTOR values reduces significantly and translates into
very uncertain estimates of dlnDs, z. However, Figure 5b shows a superimposed function,
‘‘CY sech,’’ that has the same functional form as the DZTOR scaling in Equation 16. While
there are clear deviations for the smallest magnitudes, the best estimates of dlnDs, z match
the scaling embedded within the CY14 GMM very well. This finding is used to inform the
parameterization of dlnDs, z in the full inversion.

Figure 5d compares multiple models for the near-source saturation distance, h Mð Þ. In
particular, two published models of Boore and Thompson (2015) and Yenier and
Atkinson (2015a) are shown, along with the range of h Mð Þ predictions associated with
Equation 18 over the full period range of the model. As can be appreciated, the estimates
of hM from the inversion are very close to those of Boore and Thompson (2015) for very
small magnitudes, and all models become remarkably consistent for the largest
magnitudes—albeit with very different slopes. However, it is important to note that the
effective h Mð Þ model of CY14 gives significantly longer saturation distances for the smal-
lest events. This is important because a key reason why Ds values decrease for the smallest
magnitude events is that the h Mð Þ values over this range are larger than would be expected
from physical arguments (Atkinson et al., 2016; Boore, 2012; Boore and Thompson,
2015).

Finally, Figure 5e suggests that Q0 is largely insensitive to magnitude, while h indicates
a relatively strong magnitude dependence. Note from Equation 8 that values of h! 1 cor-
respond to a situation where ln q(f , r)’� p

Q0cQ
r, that is, the anelastic attenuation becomes

frequency independent and filters all Fourier ordinates by a similar amount. Large values
of h are, therefore, similar to using a different functional form for geometric spreading.
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The correlation values in Figure 6 are encouraging in that we do not observe parameter
combinations where the correlation stays very strong (positive or negative) over the full
magnitude range. The most extreme correlations correspond to the combinations of
lnDsM, g1f g and Q0, hf g. The first of these was previously discussed, and can be
addressed, in part, through the imposition of a functional form for Ds(M) in the full
inversion. However, the correlation between Q0 and h is harder to deal with, as it arises
largely from the fact that high-frequency response spectral ordinates do not correlate
strongly with high-frequency Fourier spectral ordinates, where h is most influential (Bora
et al., 2016).

Figure 5. Variation of FAS parameters with magnitude, from magnitude-specific inversions. (a)
Logarithmic stress parameter estimates are shown, along with annotated Ds (MPa) reference values. (b)
The stress parameter increment associated with DZTOR scaling is shown, with ‘‘CY sech’’ showing the
functional scaling of DZTOR within the CY14 GMM. (c) The geometric spreading rate is shown. (d) The
near-source saturation distances obtained from the inversions are shown, along with other models. The
CY14 ranges indicate the variation of h(M) with period, ‘‘BT15’’ is the Boore and Thompson (2015)
model, and ‘‘YA15’’ is the Yenier and Atkinson (2015a) model. (e) and (f) The anelastic parameters Q0

and h, respectively, are shown.
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Optimal parameterization. Following the magnitude-specific inversions discussed in the pre-
vious section, a number of alternative parameterizations for the full inversion were consid-
ered. These alternatives were judged on the basis of their ‘‘scores,’’ as defined by Equation
11, and upon their general ability to mimic the scaling within the CY14 GMM in a parsi-
monious way. The latter characteristic was judged from visual inspection of diagnostic
plots, but is also clearly related to the formal metric provided through Equation 11.

Note that while physical reasoning influences the selected parameterization in part, the
ultimate goal is to derive a set of FAS parameters that reproduce the scaling embedded
within the CY14 GMM. It must also be recalled that the specification of the FAS model is
only one part of the overall inversion, as the site response, duration models, and peak fac-
tor model are all constrained. The specific scaling embedded within these RVT compo-
nents also influences how the FAS model should behave. For example, Equation 1 shows
that spectral amplitudes scale with both m0, which depends on the FAS, and Drvt, which
includes a fixed distance dependence within the path-scaling component. Therefore, to
match the complex geometric spreading within the CY14 GMM, we need to find the FAS

Figure 6. Parameter correlations from magnitude-specific inversions. (a) The variation of parameter
correlations with magnitude are shown. Vertical gray dashed lines correspond to the magnitudes for
which the correlation matrices are plotted in (b) and (c).
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parameterization that combines with the fixed distance dependence within the duration
model in the most appropriate manner. This point is easy to overlook as it is common to
make direct comparisons between the scaling of response and Fourier spectral amplitudes.

For the full inversion, the stress parameter was defined to include explicit magnitude
dependence for small magnitudes, and to also embed the effects of the depth to top of rup-
ture. The magnitude dependence largely offsets the near-source saturation distance of the
CY14 GMM, as previously discussed. The scaling with DZTOR should not necessarily relate
to the stress parameter that primarily controls high-frequency Fourier amplitudes. For
example, factors such as the source rigidity, ms = rsb

2
s , appearing in Equation 7, will reduce

at shallow depths and should effect all FAS ordinates across the entire frequency band.
However, the DZTOR scaling within CY14 is strongest at short periods, and weakens for
longer periods. As such, embedding the DZTOR scaling within the stress parameter allows
the source amplitudes to still be controlled by a single effective parameter and mimics the
scaling of CY14 well. The functional form for the stress parameter is, therefore, defined
as:

lnDs M, DZTORð Þ= sa + sb min M� 5, 0ð Þ
+ sg + sdsech 2max M� 4:5, 0ð Þ½ �
� �

DZTOR

ð21Þ

where sa, sb, sg, and sd are all parameters solved for during the inversion. Note that the
functional form for the DZTOR scaling is the same as that employed by CY14 as
1= cosh xð Þ[sech xð Þ. While Figure 5b suggested that scaling with DZTOR may deviate from
this form for very small magnitudes, we retain the CY14 parameterization.

Geometric spreading is defined in Equation 20, with the equivalent point-source dis-
tance defined as:

RPS = RRUP + h Mð Þ ð22Þ

and the near-source saturation distance coming from:

ln h Mð Þ= ha + hbM+
hb � hg

hd

ln 1 + e�hd M�heð Þ

 �

ð23Þ

where ha, hb, hd, and he are free parameters to be solved within the inversion. The para-
meter hg is constrained to equal hg = ln 10ð Þ=2’1:15 so that h Mð Þ scales in proportion to
the expected source dimensions of the rupture for small events. Although the parameteri-
zation of Equation 23 is certainly more elaborate than the model of Yenier and Atkinson
(2015a), shown in Figure 5d, it requires the specification of fewer parameters than the
model of Boore and Thompson (2015) while aiming to achieve similar goals. That is,
Equation 23 transitions from essentially exponential scaling with a rate of hg at small mag-
nitudes, to exponential scaling at a reduced rate of hb for large magnitudes. The parameter
hd controls how sharply this transition occurs, while he controls where the transition is cen-
tered. The functional form is the same as that used in the magnitude scaling term within
Equation 16, with the significance of the various parameters clearly illustrated in the study
by Chiou et al. (2010).
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Within the inversion, a nonlinear constraint is imposed upon the combination of hb and
g1 to avoid possible over-saturation of response spectral amplitudes for very large magni-
tudes. Initial inversions performed without imposing this constraint led to over-satura-
tion—which does not exist within the CY14 GMM. Details of this nonlinear constraint
are provided in the study by Stafford (2021a).

Finally, the quality exponent within the anelastic attenuation filter is modeled as mag-
nitude dependent, based on the results presented in Figure 5f. The distance metric used
within the anelastic attenuation filter is RRUP. The quality factor, Q0, is a free parameter in
the inversion, but h is modeled as:

h Mð Þ= ha + hb tanh M� hg

� �
ð24Þ

with ha, hb, and hg free parameters within the inversion. At very small magnitudes, the
function tends to h Mð Þ ! ha � hb; while at very large magnitudes, we have
h Mð Þ ! ha + hb. There is no physical basis to this functional form, it is simply chosen to
mimic the scaling observed in Figure 5f. However, aside from providing an improved fit
over a magnitude-independent h, that is, Equation 11 results in smaller values for h Mð Þ,
there are additional reasons to include this magnitude dependence. Specifically, inversions
of empirical data dominated by recordings of small magnitude events in California typi-
cally suggest relatively small values of h (Lin and Jordan, 2018; Raoof et al., 1999),
broadly consistent with the results shown in Figure 5d. If a magnitude-independent h were
adopted, this parameter would reflect the average over the h(M) model. Comparisons
made with recordings of small magnitude events could then suggest apparent parametric
differences in h in the host and target regions, potentially leading to unnecessary model
adjustments. Therefore, while magnitude-dependent h is atypical for FAS parameter sets,
there are good reasons to include it within this application.

In total, the optimal parameterization requires solving for 13 free parameters. The
resulting parameter estimates and associated standard errors are presented in Table 1.

Convenience parameterization. While the optimal parameterization of the previous section is
simple to implement in StochasticGround vMotionSimulation.jl, existing workflows based
on alternative software may not be able to accommodate this parameterization. In partic-
ular, the mixing of distance metrics in Equation 20 and the magnitude dependence of h in
Equation 24 may be problematic. For this reason, a ‘‘convenience parameterization’’ was
also considered.

Table 1. Estimates and standard errors for the optimal FAS parameters

Parameter Estimate Standard error Parameter Estimate Standard error

sa 2.296 0.031 hg 1.1513 0.0
sb 0.4624 0.0311 hd 5.0948 0.725
sg 0.0453 0.0136 he 7.2725 0.0566
sd 0.109 0.0166 Q0 205.4 5.53
g1 1.1611 0.00601 ha 0.6884 0.0131
ha 20.8712 0.373 hb 0.1354 0.00654
hb 0.4451 0.0474 hg 5.1278 0.0794

Note that hg is fixed in the inversion, and that the sa parameter leads to stress parameter values in units of MPa.
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This alternative parameterization closely follows the geometric spreading formulation
by Boore (2003), and makes use of RPS throughout both the geometric spreading and ane-
lastic attenuation functions (in contrast to the optimal parameterization that used RRUP as
the distance metric for anelastic attenuation). However, RPS remains calculated using
Equation 17 with n = 1, that is, the form in Equation 22. In addition, only a magnitude-
independent h was considered.

The form of the geometric spreading adopted is trilinear in lnA(f )� lnRPS space:

g RPSð Þ=

1 for RPS<r0

r0

RPS


 �g1

for r0\RPS<r1

r0

r1


 �g1 r1

RPS


 �g2

for r1\RPS<r2

r0

r1


 �g1 r1

r2


 �g2 r2

RPS


 �g3

for RPS.r2

8>>>>><
>>>>>:

ð25Þ

with r1 and r2 being the hinge distances where the geometric spreading rates g1, g2, and g3

change. To identify appropriate hinge distances, an inversion was performed that sought
to identify the parameters of Equation 25 that led to spectral ordinates as close as possible
to those obtained from Equation 20—with all other FAS parameters fixed. The fixed FAS
parameters corresponded to a preliminary model that made use of magnitude-independent
h, but otherwise had the same parameterization as the optimal model. For the optimal
model, the overall geometric spreading is defined by the free parameter g1, and the fixed
parameters rt = 50 km and gf = 0:5: For the alternative geometric spreading function of
Equation 25, the far-field spreading rate g3 was fixed equal to g3 = gf = 0:5 for consistency
with the assumptions of Equation 20 and CY14. That left the hinge distances, r1 and r2,
and the spreading rates, g1 and g2, to be solved to fully specify Equation 25. The other
key difference for this intermediate inversion was that the optimal model used RRUP within
the anelastic filter, while the alternative parameterization moved to use RPS throughout the
entire path-scaling model. The inversion used Equation 11 and sought to minimize the dif-
ferences in predictions arising from the use of Equation 25 rather than Equation 20. The
results of this inversion are shown in Figure 7 and resulted in the identification of hinge
distances of r1 = 25 km and r2 = 85 km.

It is not possible to obtain perfect agreement between the two path-scaling variants. A
key challenge is the mixing of distance metrics, with hinge distances being defined in terms
of RPS for Equation 25, and the transition distance rt relating to RRUP in Equation 20. The
magnitude dependence of RPS dictates that differences observed in Figure 7 depend on
magnitude. However, in addition to the geometric spreading parameterization differing,
the anelastic attenuation function operates upon RRUP under the optimal model and RPS

for the convenience model. The apparently subtle change in anelastic attenuation actually
has a non-trivial influence for the large-magnitude scenarios, and we see this impact in
Figure 7b, in particular. For large magnitudes, even short RRUP distances map to non-
trivial RPS values, and lead to anelastic effects being relevant.

With the hinge distances defined at r1 = 25 and r2 = 85 km, a full inversion is then con-
ducted with g1 and g2 free to adopt new values, and all other FAS parameters free to vary.
All the practical details (the parameter space, the numerical algorithms, etc) associated
with this inversion are the same as for the inversion to find the optimal parameterization.
The results of this inversion are presented in Table 2.
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Model performance

The performance of both the optimal and convenience models are demonstrated through
visual comparison with CY14 in Figures 8 to 10. In all cases, the dashed lines represent the
target CY14 model predictions, the solid lines correspond to the optimal FAS model, and
the dotted lines are for the convenience model.

Figure 8 shows the magnitude scaling of the models for six periods that span the range
of typical engineering interest. The most obvious feature of interest in this figure is the dif-
ference in magnitude scaling at the very short distance of RJB = 1 km and for magnitudes
in the approximate interval (5,7). This behavior is primarily a consequence of differences
in near-source saturation models over this magnitude range. The nonlinear constraint
imposed within the inversions to prevent oversaturation works for the larger magnitudes
(Stafford, 2021a), but differences in ∂h Mð Þ=∂M (that can be appreciated from Figure 5d)
can lead to the observed scaling at RJB = 1 km. However, it can also be appreciated that
this feature disappears very quickly, and is hard to perceive at RJB = 10 km.

Table 2. Parameter estimates and standard errors for the convenience parameterization (geometric
spreading defined according to Equation 25, magnitude-independent h, and RPS used throughout)

Parameter Estimate Standard error Parameter Estimate Standard error

sa 2.767 0.0297 hb 0.4768 0.0668
sb 0.6451 0.0317 hg 1.1513 0.0
sg 0.4077 0.0142 hd 3.418 0.779
sd 0.117 0.0173 he 7.088 0.118
g1 1.1680 0.00644 Q0 183.7 4.69
g2 0.9293 0.0214 h 0.7077 0.0107
ha 20.7771 0.541

Note that hg is again fixed in the inversion, and that the sa parameter leads to stress parameter values in units of MPa.

Figure 7. Comparison of the geometric spreading functions of Equations 20 and 25 (‘‘CY14mod target’’
shows the scaling of Equation 20, while ‘‘Piecewise result’’ corresponds to Equation 25). (a) The
spreading function for various magnitudes against the equivalent point-source distance is shown, while
(b) shows the same function plotted against the rupture distance. Vertical lines in both panels
correspond to either hinge distances, r1 and r2, or the transition distance rt. These can be magnitude
dependent, depending on whether RPS or RRUP is used on the abscissa.
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For all other periods and distances, we generally observe a close agreement between all
three sets of model predictions. In judging the performance of the RVT-based predictions,
it is important to keep in mind that the primary use of the RVT parameterization is to
develop host-to-target model adjustments. In this context, absolute differences in ampli-
tude are arguably less important than achieving a good similarity of the ‘‘shapes’’ of the
curves. Furthermore, ‘‘local’’ issues like the magnitude scaling at RJB = 1 km are very rarely
of practical interest when deriving model adjustments (e.g. those scenarios need not be
considered when developing the adjustment factors). The ability of the RVT models to
largely replicate the scaling of CY14 is a direct consequence of that model basing its mag-
nitude scaling on Fourier spectral theory. This was one of the reasons cited by Bommer
and Stafford (2020) for recommending CY14 as a robust backbone GMM.

Figure 8. Comparison of magnitude scaling in the CY14 GMM and the two RVT-based models defined
by the parameters in Tables 1 (‘‘Optimal RVT’’) and 2 (‘‘Convenience RVT’’). (a)–(f) Each show the scaling
for a particular period. The legends in (a) and (f) apply to all panels.
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It is also noteworthy that the loss in performance associated with using the convenience
parameterization over the optimal parameterization is not visually obvious from Figures 8
to 10. Figure 9, focusing upon distance scaling, should be expected to highlight differences
between these two RVT-based models most clearly. However, there are many rupture sce-
narios (often at relatively short distances) where the convenience parameterization outper-
forms the optimal model. Where the optimal model tends to show that superior
performance is at large distances and relatively short periods. For these scenarios, the use
of magnitude-dependent h Mð Þ helps the optimal model, and the change of the geometric
spreading formulation is less significant. Although these large distance scenarios are rarely
important for hazard studies, they frequently coincide with scenarios for which empirical

Figure 9. Comparison of distance scaling in the CY14 GMM and the two RVT-based models defined by
the parameters in Tables 1 (‘‘Optimal RVT’’) and 2 (‘‘Convenience RVT’’). (a)–(f) Each show the scaling
for a particular period. The legends in (a) and (f) apply to all panels.
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data are available for the target region. Consequently, improving the performance for
these scenarios can have important practical consequences.

Part of the reason why the change in geometric spreading formulation is not so crucial
is that despite Equation 20 attempting to mimic the functional form of CY14, the overall
path scaling of Sa also depends upon the adopted scaling within the Boore and Thompson
(2014, 2015) path duration model. Some of the deviations in spreading rates observed in
Figure 9 for either RVT-based model or the CY14 model can be attributed to the scaling
of the duration model, or at least its interaction with the geometric spreading functions in
the FAS formulations.

Figure 9 shows predictions obtained using DZTOR = 0 in all cases. The shortest rupture
depths for the smallest magnitudes are, therefore, influenced by the expected ZTOR model
shown in Figure 4. If we allow very shallow depths to be considered, differences between
the RVT and CY14 predictions arise as a result of h Mð Þ effects. Specifically, the FAS para-
meters in Tables 1 and 2 both indicate very short saturation distances at small magnitudes,
while CY14 has quite large h Mð Þ, as seen in Figure 5d. The relative decrease in Ds associ-
ated with shallower-than-expected ruptures, does not fully compensate for the differences
in RPS between the RVT models and CY14. However, for the purposes of developing host-
to-target model adjustments, these scenarios are rarely of importance.

The comparison of spectral scaling in Figure 10 shows that we achieve very good agree-
ment in both spectral shape and absolute amplitude for the small-to-moderate magnitude
scenarios. This is largely to be expected given that the point-source approximation should
work most effectively for these magnitudes. In Figure 10e and f, we see that the RVT-
based models have difficulty replicating the spectral shape of CY14. In particular, at long
periods, the rate of spectral decay with period is stronger for CY14 than in the RVT mod-
els. This portion of the response spectrum is primary controlled by low frequencies in the
Fourier domain where our FAS model has relatively few degrees of freedom. In particular,
once a single-corner source spectrum is adopted, we have very limited control over these
low-frequency FAS ordinates. At short periods and large distances, we also have chal-
lenges replicating the spectral shape for large magnitudes. Here, the role of the magnitude-
dependent h Mð Þ is most clearly appreciated. For the large magnitudes, it is clear that the
magnitude-independent h within the convenience parameterization systematically under-
predicts the amplitudes at short periods and over-predicts at long periods. While this is
largely true of the optimal model as well, it can be seen that the optimal model is able to
mimic the target shape slightly better, that is, the spectral peak is slightly better aligned
with the target.

The degree of agreement between the CY14 target and the RVT-based predictions
shown in Figures 8 to 10 can be slightly misleading as a result of plotting predictions over
multiple decades. For this reason, Figures 11 to 13 show the relative performance of the
optimal and convenience models through ratios with respect to the CY14 target. In all
cases, values of unity correspond to a perfect match with the CY14 prediction. While these
figures demonstrate that the RVT-based models are generally within 50% of the CY14
target, it is clear that there are local variations in the degree of agreement with respect to
magnitude. To put this into some perspective, Al Atik and Youngs (2014) showed that the
model-to-model standard deviation among the NGA-West2 GMMs is on the order of 0.2
natural log units—corresponding to a factor of ’20% (with the model-to-model range
being larger). For the distance ratios in Figure 12, the ratios are largely flat to beyond
100 km, before the differences in anelastic attenuation play a stronger role. For the
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spectral ratios, Figure 13 shows that for most distances, the ratios are also relatively flat at
short periods (indicating similar spectral shape to CY14), but that departures increase at
longer periods.

In general, consideration of Figures 11 to 13 indicate that both the optimal and conve-
nience parameterizations face similar challenges in replicating the scaling of the CY14
model. Comparisons of corresponding pairs of curves in these figures tends to show that
the optimal model (solid lines) is slightly closer to unity than the convenience model
(dotted lines), on average. However, it is also clear from the complete set of Figures 8 to
13 that the optimal parameterization is not drastically superior to the more familiar conve-
nience parameterization.

Figure 10. Comparison of spectral scaling in the CY14 GMM and the two RVT-based models defined
by the parameters in Tables 1 (‘‘Optimal RVT’’) and 2 (‘‘Convenience RVT’’). (a)–(f) each show the scaling
for a particular magnitude. The legends in (a) and (f) apply to all panels.
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As noted previously, the primary purpose of these inversions is to facilitate host-to-
target model adjustments, and it is important to keep in mind where, in magnitude–
distance space, empirical constraint for the target region tends to come from. Generally
speaking, for the small-to-moderate magnitudes and intermediate-to-long distances of
greatest practical importance, both the FAS parameterizations do a good job of replicat-
ing the absolute amplitude and scaling of the CY14 GMM.

Discussion and conclusion

In this article, we have presented host-region parameters that are broadly consistent with
the CY14 GMM, with the intention of facilitating the application of a backbone GMM

Figure 11. Ratios of the RVT-based predictions to the CY14 target with respect to magnitude, for a
number of distances and periods.
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approach to constructing a logic tree for use in PSHA in a region of crustal seismicity. The
CY14 accounts for scaling features that cannot be captured through standard parameteri-
zations of the Fourier spectrum based on point-source seismological theory, and it is never
the intention to perfectly match the CY14 predictions using the inverted FAS parameter
set. However, it is important to achieve as close a match as possible so that model adjust-
ments derived within the HEM framework do not distort the general scaling of the CY14
model in undesirable ways when it is adapted for application in the target region. In addi-
tion, it is important to capture magnitude dependencies of the FAS parameters so that
parametric comparisons between the host model and the target region relate to similar rup-
ture scenarios.

If the approach and these parameter suites presented in the article are accepted, then
the task of developing a ground-motion logic tree can focus exclusively on determination

Figure 12. Ratios of the RVT-based predictions to the CY14 target with respect to distance, for a
number of magnitudes and periods.
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of the target-region parameters. This is likely to be achieved through a combination of in
situ site measurements and analyses of ground-motion recordings from the target region,
including estimation of the uncertainty associated with each of the target-region para-
meters. The source and path differences can be accommodated through direct adjustments
to the appropriate coefficients of CY14, or by developing adjustment factors using the
HEM framework. The site adjustment can be made in one of two ways, either through the
application of VS � k0 adjustments (e.g. Al Atik et al., 2014) or through applying site
response analyses to determine amplification factors for both the host and target profiles
(with k0 distributed as damping in the profiles) and then applying the ratios of these
amplification factors to the backbone GMM. If the resulting range of uncertainty is
judged to be insufficient, for example, by comparisons with the ranges implicit in suites of
high-quality GMMs such as those developed for NGA-West2 (Gregor et al., 2014) or

Figure 13. Ratios of the RVT-based predictions to the CY14 target with respect to period, for a
number of magnitudes and distances.
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NGA-East (Goulet et al., 2018), then additional nodes or branches can be incorporated
within the logic tree. The comparison should not be made with the range of predicted
amplitudes but rather with the range of uncertainty (i.e. model-to-model variability), the
philosophy being that in a data-poor target region, the epistemic uncertainty should be at
least as large as that defined for ground-motion logic trees in the data-rich host regions
such as California (Al Atik and Youngs, 2014).
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